6 research outputs found

    Monitorización de infraestructuras críticas expuestas a riesgos naturales y antrópicos mediante interferometría radar de satélite

    Full text link
    [EN] Synthetic Aperture Radar Interferometry (InSAR) is a remote sensing technique very effective for the measure of smalldisplacements of the Earth’s surface over large areas at a very low cost as compared with conventional geodetictechniques. Advanced InSAR time series algorithms for monitoring and investigating surface displacement on Earth arebased on conventional radar interferometry. These techniques allow us to measure deformation with uncertainties of 1mm/year, interpreting time series of interferometric phases at coherent point scatterers (PS) without the need for humanor special equipment presence on the site. By applying InSAR processing techniques to a series of radar images over thesame region, it is possible to detect line-of-sight (LOS) displacements of infrastructures on the ground and therefore identifyabnormal or excessive movement indicating potential problems requiring detailed ground investigation. A major advantageof this technology is that a single radar image can cover a major area of up to 100 km by 100 km or more as, for example,Sentinel-1 C-band satellites data cover a 250 km wide swath. Therefore, all engineering infrastructures in the area, suchas dams, dikes, bridges, ports, etc. subject to terrain deformation by volcanos, landslides, subsidence due to groundwater,gas, or oil withdrawal could be monitored, reducing operating costs effectively. In this sense, the free and open accessCopernicus Sentinel-1 data with currently up to 6-days revisit time open new opportunities for a near real-time landmonitoring. In addition, the new generation of high-resolution radar imagery acquired by SAR sensors such as TerraSARX,COSMO-SkyMed, and PAZ, and the development of multi-interferogram techniques has enhanced our capabilities inrecent years in using InSAR as deformation monitoring tool. In this paper, we address the applicability of using spaceborneSAR sensors for monitoring infrastructures in geomatics engineering and present several cases studies carried out by ourgroup related to anthropogenic and natural hazards, as well as monitoring of critical infrastructures.[ES] La interferometría radar de apertura sintética (InSAR) es una técnica de teledetección muy eficaz para medir pequeños desplazamientos de la superficie terrestre en grandes áreas a un coste muy pequeño en comparación con las técnicas geodésicas convencionales. Los algoritmos avanzados de series temporales InSAR para monitorizar e investigar el desplazamiento de la superficie terrestre se basan en la interferometría radar convencional. Estas técnicas nos permiten medir la deformación con incertidumbres de un milímetro por año, interpretando series temporales de fases interferométricas en retrodispersores puntuales coherentes (PS) sin necesidad de presencia humana o de equipos especiales en el sitio. Al aplicar técnicas de procesamiento InSAR a una serie de imágenes radar de la misma región, es posible detectar desplazamientos de infraestructuras proyectados en la línea de vista del satélite (line-of-sight o LOS) y, por lo tanto, identificar movimientos anormales o excesivos que indiquen problemas potenciales que requieran una investigación detallada del terreno. Una de las principales ventajas de esta tecnología es que una sola imagen radar puede cubrir un área importante de hasta 100 km por 100 km o más, ya que, por ejemplo, los datos de los satélites de banda C Sentinel-1 cubren una franja de 250 km de ancho. Por lo tanto, todas las infraestructuras civiles de la zona, como presas, diques, puentes, puertos, etc., sujetas a deformaciones del terreno por actividad volcánica, deslizamientos de tierra, hundimientos por extracción de agua subterránea, gas o petróleo, podrían ser monitorizados, reduciendo los costes operativos de manera efectiva. En este sentido, los datos Sentinel-1 de Copernicus, de acceso abierto, con hasta 6 días de tiempo de revisión actual abren nuevas oportunidades para una monitorización terrestre casi en tiempo real. Además, la nueva generación de imágenes radar de alta resolución adquiridas por sensores SAR como TerraSAR-X, COSMOSkyMed y PAZ, y el desarrollo de técnicas multi-interferograma ha mejorado nuestras capacidades en los últimos años en el uso del InSAR como herramienta para el control de deformaciones. En este trabajo se aborda la aplicabilidad del uso de sensores SAR espaciales para la monitorización de infraestructuras civiles en ingeniería geomática y presentamos varios casos de estudio realizados por nuestro grupo relacionados con riesgos naturales y antrópicos, así como de monitorización de infraestructura crítica.ERS-1/2 and Envisat datasets were provided by the European Space Agency (ESA). Sentinel-1A/B data were freely provided by ESA through Copernicus Programme. Data have been processed by DORIS (TUDelft), StaMPS (Andy Hooper), SARPROZ (Copyright (c) 2009-2020 Daniele Perissin), and SNAP (ESA). The satellite orbits are from TUDelft and ESA, as well as from the ESA Quality Control Group of Sentinel-1. Research was supported by [ESA Research and Service Support] for providing hardware resources employed in this work; [Spanish Ministry of Economy, Industry and Competitiveness] under ReMoDams project ESP2017-89344-R (AEI/FEDER, UE); [University of Jaén (Spain)] under PAIUJA-2021/2022 and CEACTEMA; [Junta de Andalucía (Spain)] under RNM-282 research group; [ERDF through the Operational Programme for Competitiveness and Internationalisation - COMPETE 2020 Programme] within project «POCI-01-0145-FEDER006961»; [National Funds through the FCT – Fundação para a Ciência e a Tecnologia (Portuguese Foundation for Science and Technology)] as part of project UID/EEA/50014/2013; [The Ministry of Education, Youth and Sports from the National Programme of Sustainability (NPU II)] under project «IT4Innovations excellence in science - LQ1602» (Czech Republic); and [Slovak Grant Agency VEGA] under projects No. 2/0100/20Ruiz-Armenteros, A.; Delgado-Blasco, J.; Bakon, M.; Lazecky, M.; Marchamalo-Sacristán, M.; Lamas-Fernández, F.; Ruiz-Constán, A.... (2021). Monitoring critical infrastructure exposed to anthropogenic and natural hazards using satellite radar interferometry. En Proceedings 3rd Congress in Geomatics Engineering. Editorial Universitat Politècnica de València. 137-146. https://doi.org/10.4995/CiGeo2021.2021.12736OCS13714

    Infrastructure Non-linear Deformation Monitoring Via Satellite Radar Interferometry

    Get PDF
    AbstractThe advantages of satellite radar interferometry for displacement monitoring are demonstrated in the cases of monitoring man-made structures, i.e., buildings, bridges and dams. Presented are the results from application of PSInSAR technology using ENVISAT radar images over urban area of Bratislava (Slovakia). As a whole, the investigated urban area of Bratislava is stable with the linear displacement trends of ±3mm/year. However, a non-linear approach reveals small movements on the structures without prior interest of any regarding conventional monitoring technique. Thanks to the development of high resolution SAR sensors (e.g. TerraSAR-X) many permanent scatterers can be found in one individual man-made construction. Moreover, with the shorter revisit times, it is possible to process a long series of SAR data and expand standard PS model to account for a seasonal expansion due to changes in water level and/or temperature. The topic of separation between deformations and seasonal movements is discussed within the exploitation of TerraSAR-X data for deformation monitoring of Plover Cove Dam and building of Hyatt Hotel, both located in Hong Kong. Data have been processed using advanced processing techniques implemented in SARPROZ. These techniques show high potential for continuous monitoring of ground motion and structure stability in civil surveillance

    Gecoris: An open-source toolbox for analyzing time series of corner reflectors in insar geodesy

    No full text
    Artificial radar reflectors, such as corner reflectors or transponders, are commonly used for radiometric and geometric Synthetic Aperture Radar (SAR) sensor calibration, SAR interferometry (InSAR) applications over areas with few natural coherent scatterers, and InSAR datum connection and geodetic integration. Despite the current abundance of regular SAR time series, no free and open-source software (FOSS) dedicated to analyzing SAR time series of artificial radar reflectors exists. In this paper, we present a FOSS Python toolbox for efficient and automatic estimation of: (i) the clutter level of a particular site before a corner reflector installation, (ii) the Radar Cross Section (RCS) to track a corner reflector’s performance and detect outliers, for example, due to damage or debris accumulation, (iii) the Signal-to-Clutter Ratio (SCR) to predict the positioning precision and the InSAR phase variance, (iv) the InSAR displacement time series of a corner reflector network. We use the toolbox to analyze Sentinel-1 SAR time series of the network of 23 corner reflectors for InSAR monitoring of landslides in Slovakia.Mathematical Geodesy and Positionin

    Ground Stability Monitoring of Undermined and Landslide Prone Areas by Means of Sentinel-1 Multi-Temporal InSAR, Case Study from Slovakia

    No full text
    Multi-temporal synthetic aperture radar interferometry techniques (MT-InSAR) are nowadays a well-developed remote sensing tool for ground stability monitoring of areas afflicted by natural hazards. Its application capability has recently been emphasized by the Sentinel-1 satellite mission, providing extensive spatial coverage, regular temporal sampling and free data availability. We perform MT-InSAR analysis over the wider Upper Nitra region in Slovakia, utilizing all Sentinel-1 images acquired since November 2014 until March 2017. This region is notable for its extensive landslide susceptibility as well as intensive brown coal mining. We focus on two case studies, being impaired by recent activation of these geohazards, which caused serious damage to local structures. We incorporate a processing chain based on open-source tools, combining the current Sentinel Application Platform (SNAP) and Stanford Method for Persistent Scatterers (StaMPS) implementation. MT-InSAR results reveal substantial activity at both case studies, exceeding the annual displacement velocities of 30 mm/year. Moreover, our observations are validated and their accuracy is confirmed via comparison with ground truth data from borehole inclinometers and terrestrial levelling. Detected displacement time series provide valuable insight into the spatio-temporal evolution of corresponding deformation phenomena and are thus complementary to conventional terrestrial monitoring techniques. At the same time, they not only demonstrate the feasibility of MT-InSAR for the assessment of remediation works, but also constitute the possibility of operational monitoring and routine landslide inventory updates, regarding the free Sentinel-1 data

    On the Efficacy of Compact Radar Transponders for InSAR Geodesy: Results of Multiyear Field Tests

    No full text
    Compact and low-cost radar transponders are an attractive alternative to corner reflectors (CRs) for interferometric synthetic aperture radar (InSAR) deformation monitoring, datum connection, and geodetic data integration. Recently, such transponders have become commercially available for C-band sensors, which poses relevant questions on their characteristics in terms of radiometric, geometric, and phase stability. Especially for extended time series and for high-precision geodetic applications, the impact of secular or seasonal effects, such as variations in temperature and humidity, has yet to be proven. In this article, we address these challenges using a multitude of short baseline experiments with four transponders and six CRs deployed at test sites in The Netherlands and Slovakia. Combined together, we analyzed 980 transponder measurements in Sentinel-1 time series to a maximum extent of 21 months. We find an average radar cross section (RCS) of over 42 dBm2 within a range of up to 15° of elevation misalignment, which is comparable to a triangular trihedral CR with a leg length of 2.0 m. Its RCS shows the temporal variations of 0.3-0.7 dBm2 (standard deviation), which is partially correlated with surface temperature changes. The precision of the InSAR phase double differences over short baselines between a transponder and a stable reference CRs is found to be 0.5-1.2 mm (one sigma). We observe a correlation with surface temperature, leading to seasonal variations of up to ±3 mm, which should be modeled and corrected for in high-precision InSAR applications. For precise SAR positioning, we observe antenna-specific constant internal electronic delays of 1.2-2.1 m in slant range, i.e., within the range resolution of the Sentinel-1 interferometric wide (IW) product, with a temporal variability of less than 20 cm. Comparing similar transponders from the same series, we observe distinct differences in performance. Our main conclusion is that these characteristics are favorable for a wide range of geodetic applications. For particular demanding applications, individual calibration of single devices is strongly recommended.Mathematical Geodesy and Positionin

    Monitoring embankment dams from space using satellite radar interferometry: Case studies from RemoDams project

    Full text link
    [EN] The monitoring procedures with different geotechnical/structural sensors and classical geodetic techniques including GNSS are the usual practices in most of the dams where these controls are established. Other geomatic techniques such as TLS, GB-SAR and multi-temporal InSAR (MT-InSAR), allow the determination of 3D displacements with the advantage of covering a large number of control points. In particular, MT-InSAR techniques enable the detection of displacements at a very low cost compared to other techniques, and without the need for field work or the installation of special equipment. In addition, they can provide a single source of information on the stability of the dam when monitoring programs are not carried out due to lack of funding, resources or other reasons. These techniques provide measurement uncertainties of the order of 1 mm/year, interpreting time series of interferometric phases of coherent reflectors present in the area, called Persistent Scatterers. In this work, we present the adaptation and application of MT-InSAR techniques to monitor embankment dams, obtaining vertical displacements, characterizing their consolidation rates, and allowing the identification of potential problems surrounding the reservoir that require further field investigation. This study is part of the ReMoDams project, a Spanish research initiative developed for monitoring dam structural stability from space using satellite radar interferometry.ERS-1/2 and Envisat data sets were provided by the European Space Agency (ESA). Sentinel-1A/B data were freely provided by ESA through Copernicus Programme. Data have been processed by DORIS (TUDelft), StaMPS (Andy Hooper), SARPROZ (Copyright (c) 2009-2020 Daniele Perissin), and SNAP (ESA). The satellite orbits are from TUDelft and ESA, as well as from the ESA Quality control Group of Sentinel-1. Research was supported by: (a) ESA Research and Service Support for providing hardware resources employed in this work, (b) ReMoDams project ESP2017-89344-R (AEI/FEDER,UE) from Spanish Ministry of Economy, Industry and Competitiveness, POAIUJA-2021/2022 and CEACTEMA from University of Jaén (Spain), and RNM-282 research group from the Junta de Andalucía (Spain), (c) ERDF through the Operational Programme for Competitiveness and Internationalisation - COMPETE 2020 Programme within project «POCI-01-0145-FEDER-006961», and by National Funds through the FCT – Fundação para a Ciência e a Tecnologia (Portuguese Foundation for Science and Technology) as part of project UID/EEA/50014/2013, (d) The Ministry of Education, Youth and Sports from the National Programme of Sustainability (NPU II) project «IT4Innovations excellence in science - LQ1602» (Czech Republic), and (e) Slovak Grant Agency VEGA under projects No. 2/0100/20Ruiz-Armenteros, A.; Delgado-Blasco, JM.; Bakon, M.; Lamas-Fernández, F.; Marchamalo-Sacristán, M.; Gil-Cruz, AJ.; Gil-Cruz, A.... (2023). Monitoring embankment dams from space using satellite radar interferometry: Case studies from RemoDams project. Editorial Universitat Politècnica de València. 397-404. https://doi.org/10.4995/JISDM2022.2022.1388339740
    corecore